首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   30篇
  国内免费   46篇
  2023年   9篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   15篇
  2018年   11篇
  2017年   10篇
  2016年   15篇
  2015年   8篇
  2014年   11篇
  2013年   21篇
  2012年   16篇
  2011年   17篇
  2010年   8篇
  2009年   12篇
  2008年   21篇
  2007年   18篇
  2006年   12篇
  2005年   26篇
  2004年   20篇
  2003年   16篇
  2002年   14篇
  2001年   19篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   4篇
  1996年   9篇
  1995年   12篇
  1994年   9篇
  1993年   13篇
  1992年   11篇
  1991年   8篇
  1990年   18篇
  1989年   9篇
  1988年   5篇
  1987年   20篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
391.
南方稻田土壤大面积酸化是水稻生产的主要限制因子.尽管石灰作为酸化土壤调理剂已广泛应用,但大量或长期施用石灰不仅会引起土壤板结,而且会导致土壤钙、钾、镁等元素的平衡失调.硅钙钾镁肥由于溶解度更低、养分全面是良好的替代材料.为了明确硅钙钾镁肥阻控土壤酸化的效果和作用,本研究采用连续4年的硅钙钾镁肥田间定位试验,以农民习惯施肥为对照,分析在农民习惯施肥基础上增施750、1125、1500和1875 kg·hm-2硅钙钾镁肥下稻田土壤pH、交换性酸、交换性盐基离子和有效硅的动态变化.结果表明: 农民习惯施肥导致土壤pH、土壤交换性盐基和盐基饱和度逐年下降,土壤交换性酸逐年增加.与之相反,硅钙钾镁肥处理显著提高了土壤pH值,提高幅度随硅钙钾镁肥施用次数或用量的增加而增大.连续多次施用硅钙钾镁肥有效促进了盐基离子在土壤中的累积和土壤交换酸的消耗,特别是土壤交换性Ca2+、Mg2+的累积和土壤交换性Al3+的消耗,硅钙钾镁肥用量越大,积累或消耗的量越多,但速率相对越慢.土壤交换性酸消耗量中,硅钙钾镁肥释放的交换性盐基离子和相应碱贡献了108.8%,是交换性酸减少的主要途径.硅钙钾镁肥在改良稻田土壤酸性的同时,土壤有效硅含量逐年增加,增幅随硅钙钾镁肥施用量的增加而显著增大.总之,农民习惯施肥导致土壤持续酸化,酸化率为2.86 kmol H+·hm-2·a-1,硅钙钾镁肥能有效阻控酸化过程,产生了大量碱(9.69~18.44 kmol OH-·hm-2·a-1),释放的Ca2+、Mg2+盐基离子和相应碱是土壤酸化阻控的主要作用因子.  相似文献   
392.
The aims of the present study were to characterize the flow behavior and thixotropic properties of sodium alginate-magnesium aluminum silicate (SA-MAS) composite gels with various ratios of SA and MAS, and to investigate the drug diffusivity and microviscosity of the composite gels. Moreover, interaction of SA and MAS in the form of dry composite was examined by using Fourier Transform Infrared (FTIR), and a possible structure model of SA-MAS composite gel was illustrated. Incorporating MAS into the SA gels provided higher viscosity and changed the flow behavior from Newtonian to pseudoplastic with thixotropy. This was due to the formation of electrostatic force and inter-molecular hydrogen bonding between SA and MAS, leading to a denser matrix structure of the composite gels. Increasing the content of MAS decreased the drug diffusivity but increased the microviscosity of the composite gels. The denser matrix structure of the composite gels had a higher tortuosity, resulting in slower drug diffusion through water-filled channels in the gels. This finding suggested that incorporating MAS into the SA gels could improve the flow behavior and sustain drug release from the gels because of the formation of a matrix structure between SA and MAS in the gels. Published: September 7, 2007  相似文献   
393.
The solar‐rechargeable electric energy storage systems (SEESSs), which can simultaneously harvest and store solar energy, are considered a promising next‐generation renewable energy supply system. However, the difficulty in meeting the demands of higher overall photoelectric conversion and storage efficiency (PCSE) with both high power density and large energy density in the current SEESSs severely limit their practical application. Herein, a new class is demonstrated of portable and highly efficient SEESS that uniquely integrates a perovskite solar module (PSM) and an aluminum‐ion battery (AIB) directly on a bifunctional aluminum electrode without any external circuit. Such nanostructural design in the SEESS not only exhibits fast photo‐charge/discharge rate (less than one minute) with high power density (above 5000 W kg?1), but also delivers a high energy density (above 43 Wh kg?1). By rationally matching the maximum power point voltage of PSM with AIB charging voltage, an excellent solar‐charging efficiency of 15.2% and a high PCSE of 12.04% are achieved, which is among the best in all reported portable SEESSs. Moreover, enhanced PCSE is observed as the light intensity decreases, which makes such SEESS immune from the geographical location and climate limitations for diverse practical applications.  相似文献   
394.
High‐performance flexible batteries are promising energy storage devices for portable and wearable electronics. Currently, the major obstacle to develop flexible batteries is the shortage of flexible electrodes with excellent electrochemical performance. Another challenge is the limited progress in the flexible batteries beyond Li‐ion because of a safety concern for the Li‐based electrochemical system. In this work, a self‐supported tin sulfide (SnS) porous film (PF) is fabricated as a flexible cathode material in an Al‐ion battery, which delivers a high specific capacity of 406 mAh g?1. A capacity decay rate of 0.03% per cycle is achieved, indicating a good stability. The self‐supported and flexible SnS film also shows an outstanding electrochemical performance and stability during dynamic and static bending tests. In situ transmission electron microscopy demonstrates that the porous structure of SnS is beneficial for minimizing the volume expansion during charge/discharge. This leads to an improved structural stability and superior long‐term cyclability.  相似文献   
395.
Alcoa recently constructed the Fjarðaál aluminum smelter in Reyðarfjörður, East Iceland. The smelter is designed to produce a maximum of 346,000 metric tons per year of aluminum. A risk assessment was conducted to evaluate the differential human health risk related to estimated potential air emissions from the planned Fjarðaál smelter with and without seawater scrubbers. Air-dispersion modeling results provided for particulate matter (PM10), sulfur dioxide (SO2), hydrogen fluoride (HF), and polycyclic aromatic hydrocarbons (PAHs) were compared to ambient air standards or air quality guidelines from Norway, Iceland, or European directives and from the U.S. Environmental Protection Agency. Risk estimates were calculated for PAHs. Modeled air estimates were mapped geospatially, to identify potential receptors, including onsite outdoor worker, seagoing worker, hypothetical fence-line resident, future hypothetical resident, closest current resident, residents in neighboring villages, closest farmer, and a visitor to the nearby Holmanes Nature Reserve. Both with and without seawater scrubbers, the predicted exceedances of standards per year for SO2 were well below the maximum number allowed. Use of seawater scrubbers was predicted to decrease average SO2 air concentration estimates in the short term; however, annual estimates were lower without seawater scrubbers. Risk estimates for carcinogenic and non-carcinogenic PAHs, and modeled air concentrations of HF and PM10, were well within acceptable levels.  相似文献   
396.
The aims of this study were to characterize the morphology and size of flocculates and the zeta potential and rheological properties of polymer–magnesium aluminum silicate (MAS) composite dispersions and to investigate the physical properties of acetaminophen (ACT) suspensions prepared using the composite dispersions as a flocculating/suspending agent. The polymers used were sodium alginate (SA), sodium carboxymethylcellulose (SCMC), and methylcellulose (MC). The results showed that SA, SCMC, and MC could induce flocculation of MAS by a polymer-bridging mechanism, leading to the changes in the zeta potential of MAS and the flow properties of the polymer dispersions. The microscopic morphology and size of the flocculates was dependent on the molecular structure of the polymer, especially ether groups on the polymer side chain. The residual MAS from the flocculation could create a three-dimensional structure in the SA–MAS and SCMC–MAS dispersions, which brought about not only an enhancement of viscosity and thixotropic properties but also an improvement in the ACT flocculating efficiency of polymers. The use of polymer–MAS dispersions provided a higher degree of flocculation and a lower redispersibility value of ACT suspensions compared with the pure polymer dispersions. This led to a low tendency for caking of the suspensions. The SCMC–MAS dispersions provided the highest ACT flocculating efficiency, whereas the lowest ACT flocculating efficiency was found in the MC–MAS dispersions. Moreover, the added MAS did not affect ACT dissolution from the suspensions in an acidic medium. These findings suggest that the polymer–MAS dispersions show good potential for use as a flocculating/suspending agent for improving the rheological properties and physical stability of the suspensions.  相似文献   
397.
MethodsParticle bombardment was used to transform wheat with TaALMT1, the Al3+ resistance gene from wheat, using the maize ubiquitin promoter to drive expression. TaALMT1 expression, malate efflux and Al3+ resistance were measured in the T1 and T2 lines and compared with the parental line and an Al3+-resistant reference genotype, ET8.ConclusionsThe Al3+ resistance of wheat was increased by enhancing TaALMT1 expression with biotechnology. This is the first report of a major food crop being stably transformed for greater Al3+ resistance. Transgenic strategies provide options for increasing food supply on acid soils.  相似文献   
398.
399.
Leucaena was grown for eleven weeks in a pH and calcium amended oxisol and ultisol to determine whether poor growth in acid soils is related to calcium deficiency or low pH induced effects, such as aluminium toxicity. Soil pH was ameliorated by the addition of either CaCO3, or SrCO3, while CaCO3 or Ca(NO3)2 were used to modify calcium supply. In both soils, CaCO3, and SrCO3 application resulted in an increase in pH and a reduction in exchangeable aluminium although the response of leucaena to the applied amendment varied between the two soils. In the oxisol there was little effect of increased pH on growth, but a marked response to Ca application. In the ultisol, growth was improved by increasing pH but there was no response to increased calcium. The effects of liming on these soils are discussed in relation to alternative strategies available for utilising leucaena and other tree legumes.  相似文献   
400.
Forage barley dry matter yield and quality, as well as soil pH, Al, and Mn were monitored in response to P, K, and lime application on a newly cleared Typic Cryorthod (Orthid Podzol). The overall yearly yield level was affected by precipitation. Without liming soil acidification occurred after three years of production. The liming rate of 2.2 Mg.ha−1 was found optimal for maintaining initial pH levels (5.66) and increasing forage barley yields. It was also found optimum for K and P utilization for these first years of production. Soil pH dropped an average of 0.33 units over the three years on unlimed P plots and 0.46 units over 4 years on K plots. Phosphorus and K fertilization increased N utilization and resulted in decreased soil acidification. Phosphorus availability was greater in the first year of cropping than in subsequent years, this was likely due to the effects of higher available moisture, liming release of native P, and effects of initial fertilization. There was a 148% increase in total dry matter yield and an 85% increase in protein yield of forage barley with P application. Liming increased total forage barley yields an average of 69% and total protein yields 48%. Reduced barley yields in unlimed plots were due to low soil pH. After two years of cultivation, unlimed plots contained exchangeable Al and soluble Mn levels reported toxic for other soils. The higher liming rates of 4.4 and 6.6 Mg.ha−1 reduced soluble Mn to near critically low levels. soil Al and Mn were highly correlated to pH. Soil exchangeable Al, Mn, and soluble Mn along with tissue Al were inversely correlated to percentage yield. The average yield respone to three levels of applied K, increased from zero initially to 67% by the fourth year. Total dry-matter production increased 32% and total protein yield increased an average of 32% and total protein yield increased an average of 15% with K fertilization over four years. About 60% of the yield response occurred between the 0 and 22kg K.ha−1 rates. Initial soil exchangeable K levels were not maintained even at the highest 66kg K.ha−1 treatment. Soil exchangeable Al and soluble Mn were elevated with dropping pH. Soil K reserves and resupply of exchangeable K in these soils over the long term will be an important factor in crop production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号